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Inference based on regression estimator in double sampling 
BY AJIT C. TAMHANE 

Department of Industrial Engineering and Management Sciences, 
Northwestern University, Evanston, Illinois 

SUMMARY 

The problem of hypothesis testing using the regression estimator in double sampling is 
considered. Test procedures are provided when the covariance matrix between the primary 
and the auxiliary variables is either partially known or completely unknown. For the latter 
case a new 'studentized' version of the regression estimator is proposed as a test statistic. 
The exact null distribution of this statistic is derived in a special case. An approximation to 
the null distribution is derived in the general case and studied by means of the Monte Carlo 
method. The problem of choosing between the double sample regression estimator and the 
single sample mean estimator is also discussed. 

Some key word8: Bivariate normal distribution; Double sampling; Exact and approximate null distribu- 
tions; Hypothesis test; Missing observations; Regression estimator. 

1. INTRODUCTION 

In practice it is often the case that the characteristic of principal interest to the investigator 
is very expensive to measure. However, another characteristic can be identified which is 
highly correlated with the first one and is relatively inexpensive to measure. These character- 
istics will be referred to as the primary, Y, and the auxiliary, X, variables respectively. For 
estimating the mean of Y a single sampling plan which takes observations only on Y may 
not yield an estimator with desired precision since it may not be feasible to take a 
sufficiently large number of observations because of budget constraints. Then the precision 
of the estimator can often be improved by adopting a double sampling plan which takes 
observations also on the auxiliary variable. In this plan, n1 observations are taken on both 
X and Y in the first phase; n2 additional observations are taken on X alone in the second 
phase. An estimator of the mean of Y, commonly referred to as the double sample regression 
estimator or simply as the regression estimator, is then constructed using all the observa- 
tions. This estimator was first proposed by Bose (1943) and is widely used in sample surveys. 

The regression estimator also arises in inference problems regarding means of multivariate 
populations with missing observations; some recent references on this topic are Rubin (1976) 
and Little (1976). Some developments in the present paper parallel those considered by Lin 
(1973) for testing the difference between the means of two correlated variables when some 
observations on one variable are missing. The calibration problem considered by Scheff6 
(1973) and Williams (1969) is also related to the problem under study. 

In the present paper our main interest centres on the problem of testing hypotheses 
concerning the mean of Y using its regression estimator. We assume that X and Y are 
jointly normally distributed. First we state some basic results regarding the regression 
estimator and compare its performance with the ordinary sample mean of Y obtained by 
using a single sampling plan, when both the sampling plans are subject to the same budget 
constraint. Next we provide test procedures based on the regression estimabor for situations 
where some partial knowledge about the covariance matrix between X and Y is available. 
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Finally, we consider the case where the covariance matrix is completely unknown. This same 
problem has recently received attention in the papers by Khatri, Bhargava & Shah 
(1974) and Little (1976). Whereas Khatri et al. derived the exact distribution of a certain 
'studentized' version of the regression estimator, Little derived a type of t approximation 
to the distribution of another studentized version of it. The exact distribution derived by 
Khatri et al. is very complicated and depends on p, the correlation coefficient between X and 
Y, which is a nuisance parameter in the present problem. Therefore their results are not par- 
ticularly useful from a practical viewpoint. We propose a new studentization and derive its 
exact null distribution in a special case which does not depend on p. Next we derive an 
approximation to the null distribution in the general case which is easy to apply in practice. 
This approximation also involves a t distribution with nonintegral number of degrees of 
freedom. We study the empirical size and power of the test based on this approximation by 
means of the Monte Carlo method and compare it with some competing test statistics, 
including Little's statistic. 

2. PRELIMINARIES 

2 1. Model and some basic results 
We assume that (X, Y) follows a bivariate normal distribution with mean vector (pll, 2) 

and covariance matrix 
a12 pal 0a 

[Pal 0'2 2 

Suppose that we have a random sample (Xi, Yj) (1 < i < nl) from this distribution, and in 
addition that we have n2 independent observations Xi (n1 + 1 < i < n, + n2). Let n = nj + n2 
and 0 = n2/n. It can be shown that if Q is known then the minimum variance unbiased 
estimator of 2 is given by '2 = Y1 + P0(X2- X1), where P = pa2/Ul and 

ni - nj n- f 

Y1= Y/nl, Xl= , XJ1n,, X2 = E Xi/n2. 
i=l i=l i=nl+l 

The estimator &2 is referred to as the regression estimator. It is unbiased and its variance 
equals a2(1 _ p2 0)/nl. 

If Q is not known then it can be shown (Anderson, 1957) that the maximum likelihood 
estimator Of 2 is 22= Y+ 0(X2- X), where =(X - X)(Y - Y)/ (X -X1)2 is the 
usual estimate of the regression coefficient from the first n1 observations. This latter esti- 
mator of the mean is commonly referred to as the regression estimator. It is unbiased and 
its variance equals 

a2[1 + t0/(n1 - 3)} {1 - (n, -2) p2}] nj1 (2.1) 
for n, > 3 (Morrison, 1971). 

2 2. When to use the regression estimator 
A natural competitor to 12 is '. This sample mean estimator Of2 does not use data on the 

auxiliary variable. If Q is known, we have that var (12) < var (Yl). If Q is unknown we have 
that var (12) < var (Y1) whenever p2 > 1/(n - 2). 

The above comparison of 2 and Y1 would be useful when the double sample is already 
available, either through a plan or through an accident, that is missing observations, and the 
choice is to be made between the two estimators. However, if the allocation of the observa- 
tions is within the control of the experimenter and he wishes to plan his ex4periment to 
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estimate /L2 then the following comparison would perhaps be more appropriate; see also 
Matthai (1951). 

Suppose that the sampling cost function is linear, with no set-up costs, and that cl and C2 
denote the costs per observation on X and Y respectively withC2 >0 c > 0. Further assume 
that the total sampling cost is not to exceed some preassigned positive constant K. Consider 
the double sampling plan for which n, and n2 must satisfy (Cl + C2)n, + C2n2 < K. Hence- 
forth in this section we consider n, and n2 to be nonnegative continuous variables. It is easy 
to verify that, if Q is known, then it is worth increasing n2 above zero only if p2 > Co1(Cl + C2). 

When this inequality holds, we should choose n1 and n2 so that 

nl/(n1 +n2) = {C1(J p2)C2 p2}1/2 (2.2) 
subject to the constraint that (c1 + C2) n + C2n2 =K; the corresponding minimuLmi value of 
var (12) = o2[(Cl p2)12+{02(1 - p2)}1/2]2/K. On the other hand, if a single sampling plan is 
followed and all the observations are made on Y, then the variance of the resulting sample 
mean estimator Y is a2 c2/K. It is easy to verify that var (/2) < var (Y) whenever 
p2>4c C2/(C1 + C2)2 > Cl/(Cl + C2). Thus consideration of when to use the regression estimator 
depends crucially on I p I and the cost ratio C1/C2. 

If Q is not known then we cannot make the optimum allocation as in (2.2); however, if a 
prior estimate of p is available then it should be used in making an approximately optimum 
allocation. 

3. TEST PROCEDURES FOR PARTIALLY KNOWN Q 
3 1. Preliminaries 

Suppose that it is desired to construct a test using the regression estimator for the two- 
sided hypothesis testing problem Ho: 2 =-0 against H,: x2 $ 0. We shall consider two special 
cases; in each we shall assume different but specified levels of partial knowledge about Q. 
Clearly for completely known Q, one uses V2 n1/2 a2( 1- p2 0)-1/2 as the test statistic which is 
distributed as N(0, 1) under Ho and which gives a uniformly most powerful test among all 
unbiased tests. 

3-2. Q known up to a multiple 
The situation where Q is known up to a multiple is equivalent to P and p being known and 

U2/orl = B/3p. An unbiased estimate of a2 with 2n, + n2-2 degrees of freedom can then be 
obtained as 

(nin 
2- ( E (Yi-Y1)2+(fl/p)2Z (X -X )2(2n, + n2-2)1, 

i=l ~~~~i=l 
where X = ( 1-0) XI + OX2 is the cumulative sample mean of the X's. The test is based on the 
statistic 

T = tY1 + :8(X2- X,)} ni/2{a2( 1 - p2 
which is distributed as a t2ni+n -2variable under Ho. A two-sided test based on this statistic 
is uniformly most powerful among all unbiased tests. 

3.3. Only : known 
Define Ui = Yi - P3X (1 < i < nl) and Vi = -fl6Xn1+i (1 < i < n2) and note that the random 

variables Ui and T' are all mutually independent. Further the Ui are N(l, q2) with el = V2-t ? 

and 12- 2(1 +02p2-20p2) and the Tq are N(g2,?) with 62 =f-ft and q- cr2 02p2. There- 
fore the given testing problem is equivalent to testing Ho: 2= 2 against H,: ,t, $2 Since 
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the variances ?J and q2 are unknown and unequal and the samples are independent, this 
corresponds to the Behrens-Fisher problem. A large number of approximate solutions to this 
problem are available (Lee & Gurland, 1975), any one of which can be applied in the present 
context. Here we shall present a modification of Banerjee's (1961) method; this modification 
is based on the fact that -q and ?Jq are not completely unrelated parameters. Naik (1975) has 
considered a similar modification for Lin's (1973) testing problem. 

Define 
nlZi n2, nil flg 

U= Ui/nl,, V- Vi/n, S2- (iU)2/(n-1, S2=V(-1)2/(n2-) 
i-=1 i=l i=2 i=2 

The test statistic used is 

P2= {Y1 + O(X2 - X1)} (al SI2/n + a2 S2/n2)-1', (3.1) 

and the critical region is T2 > 1. In (3. 1), al and a2 are constants to be determined so that the 
size of the critical region is < ox (O < ax < 1), the specified level of significance. 

Let us define A = (-r2/nl)/{(r2j/nl) + (q22/n2)}. Then we note that under Ho 
2 

T2 xi , (3.2) 
n alx2ll/(n,- + (1A) a2 x2nl/f2-102 1) 

where x2 denotes a central chi-squared variable with v degrees of freedom. Note that in (3.2) 
all the x2 variables are independent. By using the concavity property of the distribution 
function of a xl variable it can be seen that pr (T2> 1 H HO) < x for all A, Amin < A < ;max, if this 
probability is made equal to ax at A = Amin and A = Amax. Banerjee's solution is obtained by 
taking Ammn= O and Amma.= 1, which corresponds to letting 21/ _ +0 and 2j7/ --+oo respec- 
tively. This yields ai = F1,n,-la: for i = 1, 2, where F denotes the upper c point of an F 
variable with v, and v2 degrees of freedom. 

In our problem q2/r2- = (1+ 02p2 - 20p2)/(02 p2) ranges between (1_ 0)2/02 and oo as p2 
1 m a ae(10 varies from I to 0. Therefore the corresponding values of Am . and Amax are (1- ) and 1 

respectively. We should set the values of ai so as to make the size of the test equal to cx at 
these extreme values of A. The resulting new values of ai would be no bigger than the previous 
ones and they would lead to a more powerful test statistic. These values are a, = F1,n1_1,,, 
and a2 iS the solution to the equation 

pr {X2> (1-0)(F1,11,) x211I(ni-1)+0a2x25-1I(n2-1)} = (3.3) 
The solutions to (3.3) for selected values of nl, n2 and cx have been tabulated by Naik (1975, 
Table 1); note that our a2, nm and n2 correspond to Naik's 12, n and n* respectively. Thus 
they can be used to perform the test. Extensions to one-sided hypothesis problems are quite 
straightforward. 

4. TEST PROCEDURES FOR UNKNOWN Q 

4*1. Test statistic 
In this case, we propose the following studentized regression estimator as the test statistic: 

T3 Y1 + 0(G2 --X1) 41 
T3 = [ (Yi-t)2/ {n1(nj - 3 )} + E (Y -Y 1)2/tn(n, - 1)}]1/ 4 

where the summations are over i = 1, ...,n1 and i- = Y1 +$(Xi-X1) for 1 < i inl. In (4.1) 
the squared denominator is an unbiased estimate of var (22) given by (2.1) (Tikkiwal, 1960). 
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Little's (1976) test statistic differs only slightly from ours; he uses 

T Y1+ ,8(X2-X1) (4X2) 
[6(nl - 2) z (1Y -; )2/{n2(n - 3)) + I (Y - Y)2/(nnl)]1/2 ( 

Therefore the asymptotic distributions, as n1 -> oo, n2/n = 6 -. 6* e [0, 1], of both the test 
statistics are the same, namely N{JU2 n1/2 a-1(1 - O*p2)-l/2, 1}. Large sample tests can be 
constructed using this fact. However, here we are mainly concerned with small sample theory. 

It can be checked that in the case of small samples, the distribution of T3 is free of all 
nuisance parameters except p. The exact distribution of T3 is extremely hard to derive in 
the general case. We derive the exact null distribution of T3 in a special case in ? 4-2 and a 
t type of approximation in the general case in ? 4 3. 

4*2. Exact null distribution in a special case 
The main difficulty in deriving the exact distribution of T3 arises because its numerator 

and denominator are correlated. However, in one special case of some practical interest this 
difficulty disappears and the distribution can be easily derived. This is the situation where 
a double sample is planned and c2 > cL and therefore n2> nL; see (2.2). This leads us to the 
following theorem. 

THEOREM 4. 1. Suppose that for fixed n1 (3 < nL < c), n2 -+ Xo and therefore 6 -? 1; then 

pr (TM (a I Ho) -+ G:1..z [ - n1 ] dG1 __1(z) (4'3) p I . 1,n-2 -(n. -3) {1 + z/(n1L - 1) _ 

where 0,,,2( . ) denotes the distribution function of an F,,,,. variable. 

Proof. First we note that under the specified limiting conditions T3 converges stochastically 
to the random variable 

T - 0(X -,ul)} {nl(n - 3)}1/2 (n _ 2)2 

We shall henceforth restrict attention to the null distribution of T. We shall first condition 
on the X;. (1 < i < nl) and therefore on the sufficient statistics X1 and S2 = z (X -X1)2. Then 
using results of Anderson (1958, p. 64), we have that, say, 

Fll{a2( 1-p2)1/2} = U-N{f(X1-,ll1)a-1(l -p2)-1/2, 1}, 

- p2)1/2} = - N{fSau1(l - p2)-1/2 1i (4.4) 

z (Y 
f)2/{_f2(1 - 

p2)} 3 - X 

and U, V and W are mutually independent. Therefore 

T2 {U - V(X1-pl)/S}2 {1/nl+(X_1 - ,.)2/S2} Fln:L-2 
n1(n1-3) W n1-2 

Hence 
pr (T2 ( a j Ho) = E(<1yo8) pr (Fl,n,1-2 < {(n1 -2) a}/[(n1 - 3) {1 + (X1-I1)2 nj/S2}]). 

Now by using the fact that (X1 - ,)2 nj/S2 _ (n1 - 1)-i Fl1,j_. it is easy to see that (4.3) 
follows immediately; the result does not involve the nuisance parameter p. It is also easy to 
evaluate on a computer and therefore can be used to construct the tests when n2> n. 
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4'3. Approximate null distribution in the general case 
To fit a t distribution to T3 under Ho we first fit, as Little (1976), a scaled chi-squared 

(gX2) distribution to the unbiased estimate of var (&2) used in (4.1) by matching their first two 
moments. To compute the moments of estimated var (/22) we note that Z (Y2 n--1 

where the summation is over i = 1,...,nl. Further , _ Xi )2 
and conditional on the Xi (1 < i < nl) these two terms are independent and their distributions 
are as given in (4.4). The second moment of the estimate of var (22) can then be found by 
some routine calculations; the first moment is already known and is given in (2.1). Equating 
the two moments, we obtain 

n, [1 + {0/(n,-3)} t1-(n,-2)p2}] = g(45) 

ey41 1 02(n1-2) (1 - p2)2 + 20(n1-2) (1 - p2)2 = (4g6) 
a2 (n,- 1) n2+ nl2(n_ 3) nl(n, -1) (n - 3) n J6 

Equations (4.5) and (4.6) yield 

f = [I -0 + {O(n - 2)/(n - 3)) (1 _ p2)]2 

((1 -0)2+ 02(n1-2)(1-p2)2 20(1-0)(n -2)(1-p2)2}_ 
t(n. -1) (n. -3)2 (n1-1) (n1-3) ( 

Now if we regard , as a fixed constant then the numerator of (44 1) is normally distributed 
and therefore under Ho, T3 is approximately distributed as t1. However, there are two 
difficulties in using this approximation: (i) as remarked above , is not a fixed constant but is 
a random variable, and (ii) f depends on the unknown parameter p. In spite of the first 
difficulty, which would become less serious for large nl, we shall still attempt to fit the t 
distribution but with degrees of freedom !, where f is obtained from (4 7) with p replaced by 
its usual estimate p. In this manner we take care of the second difficulty. 

We point out that at p2 = 1, f = n- 1 which agrees with the exact null distribution of T3, 
since, in this case, Y, = 8 + fXi almost surely for some , $ 0, and T3 becomes 

{(S + PfX) Vn}/{l2 z (X - X)2/(n -1 )}1/2, 

which is distributed as tn_.1. At p2 = 0 it can be checked using some tedious algebra that 
n -2 f < n1- 1; for fixed n1 as 0 --0, f-n1- 1 and as 06- 1, f--n1- 2. Further, f is concave 
in p2 and the minimum value off = n,-2 which is attained at p2 = 0 in the above limiting 
case. Also the maximum value of f is attained when 

p2= 1-(I-0)/tO(n -1)/(n -3) + 2(1-0)} 
and this value equals 

(n - 1) +{O(n, - 2)/(n, - 3)} {0/(n, - 3) + 2(1 - 0)/(n -1)), 

which is increasing in 0 for fixed n1 and tends to 2n, -3 as 0 -? 1. 
The above discussion gives some idea about the range of values of f. It also indicates that, 

since f is always greater than n1 -2, one can use tn-2as a conservative approximation to the 
null distribution of T3. Although this will lead to less powerful tests, it might still be useful 
in practice because of its ease in application. We study both these approximations by means 
of the Monte Carlo method in the next section. 
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Here we note that Little provides the approximation tj to the null distribution of his 
statistic T4 where 

A= (n-1){1 +(1/n -I/n)(1- p4)}-1. (4.8) 

5. MONTE CARLO STUDY 
The sampling studies were carried out for the one-sided hypothesis testing problem 

Ho: /12 = 0 against H1: P2 > 0 at levels a = 5% and 10%. The folowing tests, that is statistics 
and their associated critical regions, were compared in the study. 

Test I: T3 > ty,a, where T3 is our test statistic given by (4-1) and y is given by (4 7); 
Test I1: T4>tjo, where T4 is Little's test statistic given by (4.2) and A is given by (4.8); 
Test III: T5>tn11O, where T5 is the usual t statistic obtained by ignoring the data on the 

X's, namely T5 = Y1 VnjI{/ (Y*-_Y)2/(n - 1)}1/2; 
Test IV: T3 > t.1-2,w 
Empirical-sizes and powers were computed for the following parameter values: 2= 0, 

0-5, 1-0; p = 0(0.3) 0-9 and (nl,n2) = (10,20), (10,30), (10,40), (20,20), (20,30), (20,40). 
Thus for fixed cx, we have 24 observations on the empirical size of each test. Since the dis- 
tributions of the statistics are free of ul, ac2 and a2, these were taken to be 0, 1 and 1 res- 
pectively, without loss of generality. Also note that it suffices to consider only positive values 
of p for the distributions of T3 and T4. 

We generated 1000 samples in each case. To obtain a pair of bivariate normal variables, 
first a pair of independent normal variables was generated using the Box-Miuller algorithm; 
correlation was then introduced by the usual transformation. The percentage points corre- 
sponding to nonintegral t values were obtained by linear interpolation. For lack of space, we 
report in Table 1 detailed results only for a = 0 05 regarding empirical sizes at for tests I, II 

Table 1. Empirical size and power at P2 = 0.5, of tests I, II and III*; os = 5% 

p = 0-0 p = 0.3 p = 0-9 
Size (%) Power (%) Size (%) Size (%) Power (%) 

(n., n2) I II III I II III I II III I II III I II III 
(10, 20) 5.1 6.1 5.3 40*6 46-4 44-2 4-1 6.3 4.7 6-0 6-1 5.3 68.2 69-7 43.8 
(10,30) 5.0 6.7 5.8 40-5 44-2 42-5 4-6 6.3 4-0 5.3 6-9 4.9 72-4 76.3 43.0 
(10,40) 4-2 5-0 4'6 41-5 47*6 43.9 4-4 5-0 4-1 6*0 6-3 4.9 75.3 78.5 45-2 
(20, 20) 5.8 5 0 5.4 66.9 70 0 67-4 4.5 4.9 541 4.8 5 0 4.7 86.9 87.5 69.3 
(20, 30) 4.2 4.9 4.5 6841 70 4 69.3 6*2 5.3 6*0 6*1 5.3 4.7 91.5 90-2 68.4 
(20, 40) 4.6 5.9 5*0 66.9 71.3 67-9 5.3 5.8 5 0 6-8 5.3 4.7 93.0 93.8 71F9 

* The standard error of any entry is given by {P(100-P)/1000}1/2. 

and III at p = 0, 0 3 and 0 9, and powers at P,2 = 0 5, p = 0 and 0 9. The detailed results 
regarding test IV were omitted since they were quite close to that of test I although con- 
sistently lower as would be expected. The sample mean of the empirical sizes and their 
standard errors over 24 problems for all four tests are reported in Table 2. 

Table 2. Means and standard errors of empirical sizes over 24 problems 
Empirical size (%) Empirical size (%) 

Test Size (%) Mean Std error Test Size (%) Mean Std error 

I 5 5.24 0 74 III 5 4.95 0.69 
10 10-30 0.96 10 9*90 0-94 

JJ 5 5.64 0 73 IV 5 5.05 0.69 
10 11.37 1*00 10 1005 0 95 
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In Table 2, under binomial sampling, the mean empirical sizes over 24 observations have 
standard errors 0.14% and 0-19% for the levels 5% and 10% respectively. Thus only Little's 
test, that is test II, appears to yield inflated sizes; all the other tests appear to control the 
sizes fairly well. Little's own study gives lower estimates for the sizes of his test; this could 
be partly because he used only the integral part of A in finding the critical points in his 
simulation study. The standard errors of the empirical sizes for levels 5% and 10% should 
be compared, respectively, with 0.69% and 0.95% which are the corresponding standard 
deviations. The high values of standard errors are indicative of sensitivity of the size to p 
and (n,, n2). The powers for p = 0 3 differ little from those at p = 0. 

Table 1 gives more detailed results. The size of test I tends to get slightly larger than the 
desired level with I p 1. Also the inflation in the size of test II mainly arises at small n1 values, 
but the size appears to be relatively stable with respect to p. The larger power of test II 
compared to that of test I must be discounted in view of its inflated sizes. Test I is less 
powerful than test III for I p I < 0 3 but is substantially more powerful for large values of I p l; 
this is in agreement with the discussion in ? 2-2 where we found that the regression estimator 
is preferred to the sample mean for large values of I p 1. For fixed p, ot and nl, the power of 
test I increases with n2 and this increase is small for small values of I p I and moderately large 
for large values of I p 1. On the other hand, for fixed p, cy and n2, the power increases rapidly 
with n1 and this increase is stable relative to I p 1. Finally test IV, whose results are not dis- 
played in Table 1, is only slightly less powerful than test I. Thus in some cases the t.1-2 
approximation might be preferred instead of the t? approximation because of its ease of 
application and relatively small loss of power. 

Our general recommendation would be to use the test based on the t? approximation to 
,l when J p I is likely to be at least 0 3; otherwise use the ordinary t test obtained by ignoring 
the data on the auxiliary variables. 

This research was supported in part by the Office of Research and Sponsored Programs, 
Northwestern University, and the National Institute of Education. The author wishes to 
thank Professor Robert Boruch for the N.I.E. support, Mr Marc Goodfriend for carrying out 
the Monte Carlo study and two referees for useful suggestions. 
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